Tensors and Hypermatrices
نویسنده
چکیده
Lek-Heng Lim University of Chicago 15.1 Hypermatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2 15.2 Tensors and Multilinear Functionals. . . . . . . . . . . . . . . . . 15-6 15.3 Tensor Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-12 15.4 Border Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-15 15.5 Generic and Maximal Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-17 15.6 Rank-Retaining Decomposition . . . . . . . . . . . . . . . . . . . . . . 15-17 15.7 Multilinear Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-20 15.8 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-22 15.9 Hyperdeterminants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-25 15.10 Odds and Ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-28 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-28
منابع مشابه
General Tensor Spectral Co-clustering for Higher-Order Data
Spectral clustering and co-clustering are well-known techniques in data analysis, and recent work has extended spectral clustering to square, symmetric tensors and hypermatrices derived from a network. We develop a new tensor spectral co-clustering method that simultaneously clusters the rows, columns, and slices of a nonnegative three-mode tensor and generalizes to tensors with any number of m...
متن کاملPolynomial Identities for Hypermatrices
We develop an algorithm to construct algebraic invariants for hypermatrices. We then construct hyperdeterminants and exhibit a generalization of the Cayley–Hamilton theorem for hypermatrices.
متن کاملar X iv : m at h - ph / 0 20 80 10 v 2 7 A ug 2 00 2 ALGEBRAIC INVARIANTS , DETERMINANTS , AND CAYLEY – HAMILTON THEOREM FOR HYPERMATRICES . THE FOURTH – RANK CASE
We develop a method to construct algebraic invariants for hypermatrices. We then construct hyperdeterminants and exhibit a generalization of the Cayley–Hamilton theorem for hypermatrices.
متن کاملHankel hyperdeterminants and Selberg integrals
Abstract. We investigate the simplest class of hyperdeterminants defined by Cayley in the case of Hankel hypermatrices (tensors of the form Ai1i2...ik = f(i1+i2+· · ·+ik)). It is found that many classical properties of Hankel determinants can be generalized, and a connection with Selberg type integrals is established. In particular, Selberg’s original formula amounts to the evaluation of all Ha...
متن کاملSupersymmetric Hypermatrix Lie Algebra and Hypermatrix Groups Generated by the Dihedral Set D3
This work is an investigation into the structure and properties of supersymmetric hypermatrix Lie algebra generated by elements of the dihedral group D3. It is based on previous work on the subject of supersymmetric Lie algebra (Schreiber, 2012). In preview work I used several new algebraic tools; namely cubic hypermatrices (including special arrangements of such hypermatrices) and I obtained a...
متن کامل